what internet

ONENESS, On truth connecting us all: https://patents.google.com/patent/US7421476B2

Saturday, February 21, 2009

The Hidden Link Between Factory Farms and Human Illness

The Hidden Link Between Factory Farms and Human Illness

By Laura Sayre

You may be familiar with many of the problems associated with concentrated animal feeding operations, or CAFOs. These “factory farm” operations are often criticized for the smell and water pollution caused by all that concentrated manure; the unnatural, grain-heavy diets the animals consume; and the stressful, unhealthy conditions in which the animals live. You may not be aware, however, of the threat such facilities hold for you and your family’s health — even if you never buy any of the meat produced in this manner.

Factory farms are breeding grounds for virulent disease, which can then spread to the wider community via many routes — not just in food, but also in water, the air, and the bodies of farmers, farm workers and their families. Once those microbes become widespread in the environment, it’s very difficult to get rid of them.

A 2008 report from the Pew Commission on Industrial Farm Animal Production, a joint project of the Pew Charitable Trusts and the Johns Hopkins Bloomberg School of Public Health, underscores those risks. The 111-page report, two years in the making, outlines the public health, environmental, animal welfare and rural livelihood consequences of what they call “industrial farm animal production.” Its conclusions couldn’t be clearer. Factory farm production is intensifying worldwide, and rates of new infectious diseases are rising. Of particular concern is the rapid rise of antibiotic-resistant microbes, an inevitable consequence of the widespread use of antibiotics as feed additives in industrial livestock operations.

Scientists, medical personnel and public health officials have been sounding the alarm on these issues for some time. The World Health Organization and the Food and Agriculture Organization (FAO) have recommended restrictions on agricultural uses of antibiotics; the American Public Health Association (APHA) proposed a moratorium on CAFOs back in 2003. All told, more than 350 professional organizations — including the APHA, American Medical Association, the Infectious Diseases Society of America, and the American Academy of Pediatrics — have called for greater regulation of antibiotic use in livestock. The Infectious Diseases Society of America has declared antibiotic-resistant infections an epidemic in the United States. The FAO recently warned that global industrial meat production poses a serious threat to human health.

The situation is akin to that surrounding global climate change four or five years ago: near-universal scientific consensus matched by government inaction and media inattention. Although the specter of pandemic flu — in which a virulent strain of the influenza virus recombines with a highly contagious strain to create a bug rivaling that responsible for the 1918 flu pandemic, thought to have killed as many as 50 million people — is the most dire scenario, antibiotic resistance is a clear and present danger, already killing thousands of people in the United States each year.

People, Animals and Microbes

From one perspective, picking up bugs from our domesticated animals is nothing new. Approximately two-thirds of the 1,400 known human pathogens are thought to have originated in animals: Scientists think tuberculosis and the common cold probably came to us from cattle; pertussis from pigs or sheep; leprosy from water buffalo; influenza from ducks.

Most of these ailments probably appeared relatively early in the 10,000-year-old history of animal domestication. Over time, some human populations developed immunity to these diseases; others were eventually controlled with vaccines.

Some continued to kill humans until the mid-20th century discovery of penicillin, a miracle drug that rendered formerly life-threatening infections relatively harmless. Other antibiotics followed, until by the 1960s leading researchers and public health officials were declaring that the war on infectious diseases had been won.

Beginning in the mid 1970s, however, the numbers of deaths from infectious diseases in the United States started to go back up. Some were from old nemeses, such as tuberculosis, newly resistant to standard antibiotic treatments; others were wholly novel.

“In recent decades,” writes Dr. Michael Greger, director of public health and animal agriculture for the Humane Society of the United States and author of Bird Flu: A Virus of Our Own Hatching, “previously unknown diseases have surfaced at a pace unheard of in the recorded annals of medicine: more than 30 newly identified human pathogens in 30 years, most of them newly discovered zoonotic viruses.” (Zoonotic viruses are those that can be passed from animals to humans.)

Why is this happening? There are many reasons, including the increased pace of international travel and human incursions into wild animals’ habitats. But one factor stands out: the rise of industrial farm animal production. “Factory farms represent the most significant change in the lives of animals in 10,000 years,” Greger writes. “This is not how animals were supposed to live.”

Chicken and pig production are particularly bad. In 1965, the total U.S. hog population numbered 53 million, spread over more than 1 million pig farms in the United States — most of them small family operations. Today, we have 65 million hogs on just 65,640 farms nationwide. Many of these “farms” — 2,538, to be exact — have upwards of 5,000 hogs on the premises at any given time. Broiler chicken production rose from 366 million in 1945 to 8,400 million in 2001, most of them in facilities housing tens of thousands of birds.

On a global scale, the situation is even worse. Fifty-five billion chickens are now reared each year worldwide. The global pig inventory is approaching 1 billion, an estimated half of which are raised in confinement. In China and Malaysia, it’s not unheard of for hog facilities to house 20,000 or even 50,000 animals.

The Mechanics of Resistance

“Concentrated animal feeding operations are comparable to poorly run hospitals, where everyone is given antibiotics, patients lie in unchanged beds, hygiene is nonexistent, infections and re-infections are rife, waste is thrown out the window, and visitors enter and leave at will,” write Johns Hopkins researchers Ellen Silbergeld, Jay Graham and Lance Price in the 2008 Annual Review of Public Health. By concentrating large numbers of animals together, factory farms are terrific incubators for disease. The stress of factory farm conditions weakens animals’ immune systems; ammonia from accumulated waste burns lungs and makes them more susceptible to infection; the lack of sunlight and fresh air — as well as the genetic uniformity of industrial farm animal populations — facilitates the spread of pathogens.

The addition of steady doses of antibiotics to this picture tips the balance from appalling to catastrophic. Poultry producers discovered by accident in the 1940s that feeding tetracycline fermentation byproducts accelerated chickens’ growth. Since then, the use of antibiotics as feed additives has become standard practice across much of the industry. The Union of Concerned Scientists estimates that non-therapeutic animal agriculture use (drugs given to animals even when they are not sick) accounts for 70 percent of total antibiotic consumption in the United States.

The medical community has been cautioning for years against irresponsible antibiotic use among people, but in terms of sheer numbers, livestock use is far more significant. It’s a simple scientific fact that the more antibiotics are used — especially prolonged use at low doses as in factory farms — the more antibiotic-resistant microbes will become. Bacteria and viruses are also notoriously promiscuous, swapping genes across species and even across genera, creating what the Johns Hopkins researchers call “reservoirs of resistance.” “In some pathogens, selection for resistance also results in increased virulence,” they note. In other cases, otherwise harmless microbes can transfer resistance genes to pathogenic species.

There also are indications that factory farm conditions make animals more likely to excrete pathogenic microbes — suggesting another mechanism by which conversion to more humane farming methods would offer greater protection for human health.

Routes of Transmission

Most so-called bio-containment procedures for confinement livestock operations are more concerned with protecting the crowded animals from disease outbreaks than from preventing human pathogens from escaping into the wider environment. As the report from the Pew Commission points out, every step in the industrial farm animal production system holds the potential for disease transmission, from transportation and manure handling, to meat processing and animal rendering.

The increasingly globalized nature of the farm animal production system means that live animals, as well as fresh and frozen meat, are constantly crossing international borders, ensuring that diseases present in one location will soon spread elsewhere. But the biggest transmission route is waste: Confined livestock operations in the United States produce three times as much waste each year as our country’s entire human population — and yet all that manure is much more loosely regulated and handled than human waste. Antibiotic-resistant microbes, as well as the antibiotics themselves, are now widely present as environmental contaminants, with unknown consequences for everything from soil microorganisms to people. Canada’s largest waterborne disease outbreak, which infected 1,346 people and killed six, was traced to runoff from livestock farms into a town’s water supply. The U.S. Geological Survey found antimicrobial residues in 48 percent of 139 streams tested nationwide from 1999 to 2000. Other studies have detected resistant bacteria in the air up to 30 meters upwind and 150 meters downwind of industrial hog facilities.

A wealth of evidence links industrial meat and poultry directly with foodborne illness. When dioxin-contaminated chicken feed led to the removal from the market of all chicken and eggs in Belgium for several weeks in June of 1999, doctors there noted a 40 percent decline in the number of human Campylobacter infections. Repeated studies have concluded that as much as 80 percent of retail supermarket chicken in the United States is contaminated with Campylobacter. Similarly, the Centers for Disease Control and Prevention estimates that Salmonella-contaminated eggs caused 180,000 cases of sickness in the United States in 2000. E. coli O157:H7 is blamed for 73,000 illnesses in this country each year, including about 2,000 hospitalizations and 60 deaths.

Although thorough cooking and careful handling can minimize your risks, antibiotic resistance raises the stakes when someone gets ill: “One in two human cases of Campylobacter, and one in five cases of Salmonella are now antibiotic-resistant,” says Steve Roach, public health program director for the Food Animal Concerns Trust and a member of the executive committee for the Keep Antibiotics Working coalition. “And when you have antibiotic resistance, you have more complications, more blood infections, more mortality.”

In fact, public health experts are beginning to suspect that a whole host of infections not previously thought of as food-related may ultimately be linked to the overuse of antibiotics in animal agriculture. Researchers at the University of California-Berkeley, for example, traced a multi-state outbreak of urinary tract infections among women in 1999 and 2000 to contamination with a single strain of drug-resistant E. coli found in cows. Dr. Lee Riley, lead author of a paper on the findings published in Clinical Infectious Diseases, cautioned that the findings indicated that “the problem of foodborne disease is much greater in scope than we had ever previously thought.”

And then there’s methicillin-resistant Staphylococcus aureus, or MRSA. Previously confined largely to hospitals, MRSA is now killing more people in the United States each year than HIV/AIDS. A series of recent studies in Europe have demonstrated a strong causal link between MRSA and intensive pig farming in the Netherlands, Germany and France. Little or no data are available on MRSA in animals in the United States, but the bacterium is widely present on pig farms in Canada, which sells millions of live pigs to the United States annually, so it seems pretty likely it’s in U.S. pig factories, too.

All in all, the CDC reports that 2 million people in the United States now contract an infection each year while in the hospital. Of those, a staggering 90,000 die — a toll higher than that from diabetes. Numbers such as that are prompting some medical investigators to suggest that we may be entering a “post-antibiotic era,” one in which (as a paper published in Environmental Health Perspectives in 2007 put it) “there would be no effective antibiotics available for treating many life-threatening infections in humans.”

Connections such as these aren’t always easy to prove, however, especially for drugs that have already been in widespread use for decades, which is one reason why regulations to reign in the non-therapeutic use of antimicrobials have so far been largely lacking in the United States. The pending approval of an antibiotic called cefquinome to treat respiratory diseases in cattle offered a recent test case. Cefquinome is similar to cefepime, a last-resort antibiotic used to treat serious infections in people. (Both are fourth-generation cephalosporins, one of the small number of new antibiotics developed in recent years.) The FDA’s Veterinary Medicine Advisory Committee, along with the Centers for Disease Control and Prevention and the American Medical Association, recommended against approval, warning that using cefquinome for animals would almost certainly render cefepime less effective for humans. But the FDA has apparently caved to industry pressure, claiming it lacks the authority to deny the drug companies’ request.

The Way Forward

Fortunately, there is a better way. No one wants high-quality food to be unaffordable, but increasingly it appears that as a human species we need to strike a better balance between cheap food and safe food. Sweden and Denmark have led the way over the past two decades in the development of commercial farming methods that minimize antibiotic use. Alternative management strategies include improving animals’ diets, changing weaning practices for pigs, cleaning facilities thoroughly in between groups and being more careful about mixing animals coming from different locations.

Scandinavian producers weren’t necessarily happy when their countries’ ban on non-therapeutic uses of antibiotics was put in place, but they’ve come to realize that they can still run profitable operations without them. Researchers in this country have shown that the same is true here: In 2006, a team at Johns Hopkins used data from poultry giant Perdue to show that the small advantage in weight gain associated with non-therapeutic antibiotic use was canceled out by the cost of the drugs. Organic farmers in many parts of the world have also shown that livestock can be raised profitably and humanely without the use of antibiotics.

“This is not a necessary problem,” says Lance Price, scientific advisor for Johns Hopkins’ Center for a Livable Future. “If you look at all the stakeholders in this equation — you and me, the doctors and hospitals, the producers — everyone but the drug companies can entertain alternatives. The only group that stands to lose from a more responsible use of antibiotics is the drug companies.”

A bill introduced in Congress in 2007, the Preservation of Antibiotics for Medical Treatment Act, was one attempt to address these issues. Sponsored by Rep. Louise Slaughter, D-N.Y., the only microbiologist in Congress, and Senate Health Committee Chairman Edward Kennedy, D-Mass., the bill would have withdrawn approvals for feed-additive use of seven classes of antibiotics of value to human medicine and required producers of agricultural antibiotics to provide data to public health officials on the usage of the drugs they sell.

The costs associated with continuing industrial farm animal production are enormous. If it’s allowed to continue, industrial production as currently practiced could eventually eliminate a lot of other farming options (in addition to making a lot of us sick). As one Midwestern organic farmer explained to me, it’s simply not possible to raise pigs organically if you live too close to a confinement facility: The pathogen pressure is too intense. “Iowa has become a sink for pig diseases,” he said. They’re just in the air, and you can’t avoid them.


5 Nasty Microbes Linked to Factory Farming

Campylobacter: This is the most common cause of foodborne diarrheal illness in the United States, causing an estimated 2 million cases each year. Most don’t require medical treatment, but a small number (approximately 50 per year) end in death. Chicken and turkey are the usual sources: Studies have shown that most conventional chicken is contaminated when it leaves the processing plant. Rising numbers of Campylobacter infections resistant to a class of antibiotics called fluoroquinolones led the FDA, in 2000, to seek to ban fluoroquinolone use in U.S. poultry production. The ban was held up in court by drug maker Bayer, but was finally put in place in 2005.

MRSA: Staphylococcus aureus is a bacteria widely present in our environment and usually harmless, but in susceptible individuals it can cause life-threatening infections. Methicillin-resistant Staphylococcus aureus, or MRSA (pronounced “mir-sah”), used to be primarily a problem in hospitals, but these days, cases of MRSA are increasingly likely to be “community-acquired,” and evidence suggests that factory farms are a source. MRSA can be spread by human or animal carriers with no signs of illness; a recent study found that nearly half of Dutch pig farmers, and 39 percent of pigs in Dutch slaughterhouses, were carriers of MRSA.

Salmonella: This is another bacteria causing frequent and sometimes serious foodborne illness, with an estimated 1.4 million U.S. cases each year, including 18,000 hospitalizations and 600 deaths. Salmonella can contaminate beef, poultry, eggs and even vegetables. Antibiotic-resistant Salmonella is on the rise: One strain, known as DT104, is resistant to five major antibiotics used in humans.

E. coli O157:H7: Most Escherichia coli bacteria are harmless, but a few strains, including the notorious O157:H7, can be deadly. Ground beef is the most common contaminated food source for people, but as the spinach scare of 2006 showed, other foods can also be affected. The toxic strains are linked to conditions in beef feedlots.

Enterococcus: Enterococci are a widespread group of intestinal bacteria that can cause serious infections in other parts of the body. Antibiotic resistance is a major concern with Enterococcus faecium, the strain most commonly associated with illness in people. In Europe, vancomycin-resistant Enterococcus (VRE) is a widespread environmental contaminant, where its emergence has been linked to agricultural use of avoparcin, an antibiotic closely related to vancomycin. In the United States, VRE is more often found in hospitals, and doctors are running out of treatment options: About 4 percent of VRE patients no longer respond to the antibiotic Synercid, a last-defense drug which is unfortunately related to virginiamycin, widely used in U.S. animal agriculture.


What You Can Do

Reduce the amount of meat in your diet. Industrial farm animal production is driven by rising global demand for meat. Healthy protein alternatives include whole grains, beans, nuts and dairy products. Think of meat more as a seasoning (as in soups and stews), not an essential, three-meals-a-day main course.

When you do eat meat, buy from local farmers practicing humane, sustainable methods. Seek out meat and dairy products labeled as “raised without antibiotics,” and tell your local market manager you’d like to see more such products on store shelves.

Contact your Congressional delegation and ask them to support legislation to limit antibiotics in livestock feed, such as the Preservation of Antibiotics for Medical Treatment Act, introduced to Congress in 2007.

Friday, February 20, 2009

All tangled up | The Intention Experiment

All tangled up

February 20th, 2009 by Lynne McTaggart

The hardest thing to get your mind around with quantum physics is that the smallest units of the universe like electrons or photons aren’t a solid and stable thing, but a potential of any one of its future selves – or what is known by physicists as a ‘superposition’, or sum, of all probabilities. It’s all its possible selves – all at the same time.

At its most elemental, physical matter isn’t solid and stable – indeed, isn’t an anything yet.

Tangled by entanglement
Another strange feature of quantum physics is a feature called ‘non-locality’, also poetically referred to as ‘quantum entanglement’. The Danish physicist Niels Bohr discovered that once subatomic particles such as electrons or photons are in contact, they remain aware of and influenced by each other instantaneously over any distance forever, despite the absence of the usual things that physicists understand are responsible for influence, such as an exchange of force or energy.

When entangled, the actions – for instance, the magnetic orientation – of one will always influence the other in the same or the opposite direction, no matter how far they are separated.

Modern physicists have demonstrated decisively that once two subatomic particles have connected, the measurement of one photon instantaneously affected the position of the second photon. The two photons continued to talk to each other and whatever happened to one was identical to, or very opposite of, what happened to the other. Today, even the most conservative physicists accept non-locality as a strange feature of subatomic reality.

Although modern physicists now accept these effects as a given feature of the quantum world, they console themselves by maintaining that this strange, counter-intuitive property of the subatomic universe does not apply to anything bigger than a photon or an electron or to anything alive. The prevailing view is that quantum effects are only seen in laboratories with non-living systems at temperatures close to absolute zero.
Once things gets to the level of atoms and molecules, to the hot and wet world of the living organism — which in the world of physics is termed ‘macroscopic’ — the universe starts behaving itself again, according to predictable, measurable, Newtonian laws.

At the heart of biology
However, the latest evidence demonstrates that quantum effects like entanglement could be at the very heart of biological processes. A multi-center study carried out by the University of California at Berkeley. Washington University at St. Louis, Missouri and the Institute of Physics of Charles University in the Czech Republic, discovered that quantum processes inside of green sulfur bacteria drives the essential process of converting solar energy into oxygen and food.

The researchers tracked the workings of the protein network connecting the external solar collectors, or chlorosomes, to energy centers inside each cell by hitting these proteins with ultrafast laser pulses and following the trail of the light through the cell structure and into its reaction centers, where the conversion of light into oxygen and carbohydrates takes place.

To the amazement of the researchers, the light traveled in several directions at once – much as an electron does when travelling undetected in its superposition state. The researchers believe that this energy in a sense ‘tries out’ various pathways before finally choosing the most efficient.

This stunning finding suggests that the most basic and fundamental of all biological processes, responsible for most of life on earth in the form of oxygen supply and food source, is driven by a quantum process.

Quantum green tea
Another study by a group from the Autonomous University of Barcelona discovered that the antioxidant effects of green tea, which counteract the effects of free radicals, have to do with an effect in which, electrons in a molecule somehow are able to jump over and adhere to a second molecule, even though the laws of classical physics says that electrons are bound together too tightly ever to do such a thing.

This phenomenon of jumping ship from one molecule to the next is known as ‘quantum tunneling’. The Spanish researchers have discovered that electrons from the antioxidants, called catechins, in the tea engage in a mopping up exercise of free radicals, which produce an extra electron. The catechin electrons are able to tunnel to a free radical electron, binding it up and preventing it from damaging cells in the body.

In fact, entanglement is now easy to achieve in large ‘macroscopic’ systems in the lab. Physicist Vlatko Vedral of the University of Leeds, working with a team from Portugal and Austria, was able to show that photons from a laser can be entangled with the crystal lattice of a mirror and that this relationship would persist at high temperatures.

Tied up in the Canaries
In several flamboyant gestures, the famous Austrian quantum physicist Anton Zeilinger and his team have most recently entangled a pair of photons between two islands in the Canaries separated by 144 km metres of sea. Zeilinger and his co-workers have also transferred money securely between an Austrian Bank and Vienna City Hall using pairs of entangled photons produced by a laser and distributed via optical fibers. They even showed that non-local links could be established in space by bouncing laser pulses off a satellite to a receiving station on Earth.

The implications of these discoveries are staggering. They suggest that scientists must drastically modify their understanding of reality, particularly biological reality.

By accepting these quantum effects as a natural facet of nature we are acknowledging that two of the bedrocks on which our world view rests are wrong: that influence only occurs over time and distance, and that particles, and indeed the things that are made up of particles, only exist independently of each other.

They suggest that we have to ask ourselves a very fundamental question, perhaps the most fundamental of all: does anything exist before we perform a measurement on it? Or to put that another way, if quantum entities, which are so impossible to define before measurements are taken, drive all our basic life processes, does anything exist as an actual something independently of us?
Suddenly the idea that thoughts can affect the physical world doesn’t seem so strange.

Declining Fruit and Vegetable Nutrient Composition: What Is the Evidence? -- Davis 44 (1): 15 -- HortScience

Declining Fruit and Vegetable Nutrient Composition: What Is the Evidence? -- Davis 44 (1): 15 -- HortScience: "Declining Fruit and Vegetable Nutrient Composition: What Is the Evidence?
Donald R. Davis1,2,3

Biochemical Institute, The University of Texas, Austin, TX 78712; and Bio-Communications Research Institute, 3100 North Hillside Avenue, Wichita, KS 67219

Three kinds of evidence point toward declines of some nutrients in fruits and vegetables available in the United States and the United Kingdom: 1) early studies of fertilization found inverse relationships between crop yield and mineral concentrations—the widely cited 'dilution effect'; 2) three recent studies of historical food composition data found apparent median declines of 5% to 40% or more in some minerals in groups of vegetables and perhaps fruits; one study also evaluated vitamins and protein with similar results; and 3) recent side-by-side plantings of low- and high-yield cultivars of broccoli and grains found consistently negative correlations between yield and concentrations of minerals and protein, a newly recognized genetic dilution effect. Studies of historical food composition data are inherently limited, but the other methods can focus on single crops of any kind,"

What Are NutriCircles?

What Are NutriCircles?: "NutriCircles were developed at the University of Texas, Austin by Donald R. Davis in collaboration with Roger J. Williams for his book, The Wonderful World Within You (1977, 1998). They show the nutritional quality of foods in a diagram that is far easier to grasp than a long list of numbers. They illustrate how Nature helps us get the nutrients we need, if we cooperate with her in our food choices. Similarly, they help us understand the value of limiting certain man-made foods that unfortunately dominate most Western diets.

NutriCircles are bar graphs bent into a circle so that the bars are like the petals on a flower. Each bar represents one nutrient in a food, and its length shows the amount of that nutrient. The amounts are expressed in amounts per calorie (known as nutrient density). This method shows the basic quality of a food, which does not depend on serving size."

Thursday, February 19, 2009

Chakra Chart: Chakras versus Endocrine Glands | Bright Eyes

Chakra Chart: Chakras versus Endocrine Glands

Here is an incredible chakra chart with endocrine glands shown along:

Chakra Chart

As you can see in it, chakras are shown to have very close proximity with the hormonal glands responsible for secreting hormones so essential to keep the vital body functions running in a smooth way keeping the two bright eyes intact on our face!

These are the associations:

  • The root chakra and the testes responsible for producing sperm (spermatozoa) male sex hormones including testosterone in the male body
  • The sacral chakra and the ovaries responsible for producing ovum in the female body
  • The solar plexus chakra and the pancreas plus adrenal glands responsible for producing insulin, glucagon, and somatostatin plus adrenaline respectively.
  • The heart chakra and the thymus gland responsible for producing T cell repertoire
  • The throat chakra and the thyroid gland responsible for producing thyroxine (T4) and triiodothyronine (T3)
  • The third eye chakra and the pineal gland responsible for producing melatonin
  • The crown chakra and the pituitary gland responsible for producing oxytocin, antidiuretic hormone and melanocyte-stimulating hormone

We shall be able to draw important inferences from these associations in our posts to come.

Chakras and the Body Mind Interface:
What's a Chakra?

Chakra is a Sanskrit word meaning wheel, or vortex, and it refers to each of the seven energy centers of which our consciousness, our energy system, is composed.

These chakras, or energy centers, function as pumps or valves, regulating the flow of energy through our energy system. The functioning of the chakras reflects decisions we make concerning how we choose to respond to conditions in our life. We open and close these valves when we decide what to think, and what to feel, and through which perceptual filter we choose to experience the world around us.

The chakras are not physical. They are aspects of consciousness in the same way that the auras are aspects of consciousness. The chakras are more dense than the auras, but not as dense as the physical body. They interact with the physical body through two major vehicles, the endocrine system and the nervous system. Each of the seven chakras is associated with one of the seven endocrine glands, and also with a group of nerves called a plexus. Thus, each chakra can be associated with particular parts of the body and particular functions within the body controlled by that plexus or that endocrine gland associated with that chakra.

All of your senses, all of your perceptions, all of your possible states of awareness, everything it is possible for you to experience, can be divided into seven categories. Each category can be associated with a particular chakra. Thus, the chakras represent not only particular parts of your physical body, but also particular parts of your consciousness.

When you feel tension in your consciousness, you feel it in the chakra associated with that part of your consciousness experiencing the stress, and in the parts of the physical body associated with that chakra. Where you feel the stress depends upon why you feel the stress. The tension in the chakra is detected by the nerves of the plexus associated with that chakra, and transmitted to the parts of the body controlled by that plexus. When the tension continues over a period of time, or to a particular level of intensity, the person creates a symptom on the physical level.

The symptom speaks a language that reflects the idea that we each create our reality, and the metaphoric significance of the symptom becomes apparent when the symptom is described from that point of view. Thus, rather than saying, "I can't see," the person would describe it as keeping themselves from seeing something. "I can't walk," means the person has been keeping themselves from walking away from a situation in which they are unhappy. And so on.

The symptom served to communicate to the person through their body what they had been doing to themselves in their consciousness. When the person changes something about their way of being, getting the message communicated by the symptom, the symptom has no further reason for being, and it can be released, according to whatever the person allows themselves to believe is possible.

We believe everything is possible.

We believe that anything can be healed. It's just a question of how to do it.

Understanding the chakras allows you to understand the relationship between your consciousness and your body, and to thus see your body as a map of your consciousness. It gives you a better understanding of yourself and those around you.

What else is there?

Tuesday, February 17, 2009

Closing the Achievement Gap

"Dr. Donna Elam, a senior research associate at the University of South Florida and Barth presented the report of the study.

In their findings, Barth stated that there are diverse and deeply rooted reasons for the gap in test scores and graduation rates between white students and African Americans and Latino students, as well as between middle class and low-income students. Elam stressed that a multitude of problems exist in the education system because teachers lack cultural competence."

Project ELECT
Donna Elam, Ed.D.

Scientists stop the ageing process

Scientists have stopped the ageing process in an entire organ for the first time, a study released today says.

Published in today's online edition of * Nature
Medicine*<http://www.nature. com/nm>,
researchers at the Albert Einstein College of
Medicine<http://www.aecom. yu.edu/>at Yeshiva
University <http://www.yu. edu/> in New York City also say the older organs
function as well as they did when the host animal was younger.

The researchers, led by Associate Professor Ana Maria Cuervo, blocked the ageing process in mice livers by stopping the build-up of harmful proteins inside the organ's cells.

As people age their cells become less efficient at getting rid of damaged protein resulting in a build-up of toxic material that is especially pronounced in Alzheimer's, Parkinson's and other neurodegenerative disorders.

The researchers say the findings suggest that therapies for boosting protein clearance might help stave off some of the declines in function that accompanies old age.

In experiments, livers in genetically modified mice 22 to 26 months old, the equivalent of octogenarians in human years, cleaned blood as efficiently as those in animals a quarter their age.

By contrast, the livers of normal mice in a control group began to fail.

The benefits of restoring the cleaning mechanisms found inside all cells could extend far beyond a single organ, says Cuervo.

"Our findings are particularly relevant for neurodegenerative disorders such as Parkinson's and Alzheimer's, " she says. 'Misbehaving proteins'

"Many of these diseases are due to 'misbehaving' or damaged proteins that accumulate in neurons. By preventing this decline in protein clearance, we may be able to keep these people free of symptoms for a longer time."

If the body's ability to dispose of cell debris within the cell were enhanced across a wider range of tissues, she says, it could extend life as well.

In healthy organisms, a surveillance system inside cells called chaperone-mediated autophagy (CMA) locates, digests and destroys damaged proteins.

Specialised molecules, the "chaperones" , ferry the harmful material to membrane-bound sacs of enzymes within the cells known as lysosomes.

Once the cargo has been "docked", a receptor molecule transfers the protein into the sac, where it is rapidly digested.

With age, these receptors stop working as well, resulting in a dangerous build-up of faulty proteins that has been linked, in the liver, to insulin resistance as well as the inability to metabolise sugar, fats or alcohol.

The same breakdown of the cell's cleaning machinery can also impair the liver's ability to remove the toxic build-up of drugs at a stage in life when medication is often part of daily diet.

In genetically modified mice, Cuervo compensated for the loss of the receptors in the animals by adding extra copies.

"That was enough to maintain a clean liver and to prove that if you keep your cells clean they work better," she says. Settles debate

The study goes a long way towards settling a sharp debate in the field of ageing research.

Leading Australian ageing researcher David le Couteur, Professor of Geriatric Medicine at the University of Sydney <http://www.usyd. edu.au/>, says the paper is a major breakthrough.

"She has single-handedly shown that lysosome function is a crucial part of the ageing process," he says.

Cuervo has also shown, he says, the critical role the lysosomal receptor molecules play in keeping the liver clean of damaged proteins.

While her paper does not show increased survival rates among the mice, le Couteur, who has advised her recently on the research, says Cuervo does have data on improved survival rates which she intends to publish.

He also says she is now working with pharmaceutical companies to identify drugs that will turn the receptors on, or make them more active.

Cuervo believes maintaining efficient protein clearance may improve longevity and function in all the body's tissues.

It is also possible that the same kind of "cellular clearance" can be achieved through diet, she says.

Research over the past decade has shown that restricted calorie intake in animals, including mammals, significantly enhances longevity.

"My ideal intervention in the future would be a better diet rather than a pill," she says.