Of particular interest, if all the mammalian genome is considerably similar from one animal to another then the detailed mouse genome can be used to define any sequence we seeek to change. If I choose to change a particular sequence, then this mouse map will help me find where the changes should ocurr. This should prove to be fun!
The practical consequences of the emergence of this new field are widely apparent. Identification of the genes responsible for human mendelian diseases, once a herculean task requiring large research teams, many years of hard work, and an uncertain outcome, can now be routinely accomplished in a few weeks by a single graduate student with access to DNA samples and associated phenotypes, an Internet connection to the public genome databases, a thermal cycler and a DNA-sequencing machine. With the recent publication of a draft sequence of the mouse genome11, identification of the mutations underlying a vast number of interesting mouse phenotypes has similarly been greatly simplified. Comparison of the human and mouse sequences shows that the proportion of the mammalian genome under evolutionary selection is more than twice that previously assumed.
When scientists compared the human and mouse genomes, they discovered that more than 90 percent of the mouse genome could be lined up with a region on the human genome.
genome.gov2002 Release The Mouse Genome And The Measure of Man: "Such research will have profound long-term consequences for medicine. It will help elucidate the underlying molecular mechanisms of disease. This in turn will allow researchers to design better drugs and therapies for many illnesses.
'The mouse genome is a great resource for basic and applied medical research, meaning that much of what was done in a lab can now be done through the Web. Researchers can access this information through www.ensembl.org, where all the information is provided with no restriction,' says Ewan Birney, Ph.D., Ensembl coordinator at the European Bioinformatics Institute."
Sunday, December 12, 2004
Saturday, November 20, 2004
Wired News: Dems, GOP: Who's Got the Brains?
Wired News: Dems, GOP: Who's Got the Brains?: "Last month, Drs. Joshua Freedman and Marco Iacoboni of the University of California at Los Angeles finished scanning the brains of 10 Republicans and 10 Democrats. Each viewed images of President Bush, John Kerry and Ralph Nader.
When viewing their favorite candidate, all showed increased activity in the region implicated in empathy. And when viewing the opposition, all had increased blood flow in the region where humans consciously assert control over emotions � suggesting the volunteers were actively attempting to dislike the opposition.
Nonetheless, some differences appeared between the brain activity of Democrats and Republicans. Take empathy: One Democrat's brain lit up at an image of Kerry 'with a profound sense of connection, like a beautiful sunset,' Freedman said. Brain activity in a Republican shown an image of Bush was 'more interpersonal, such as if you smiled at someone and they smiled back.'"
When viewing their favorite candidate, all showed increased activity in the region implicated in empathy. And when viewing the opposition, all had increased blood flow in the region where humans consciously assert control over emotions � suggesting the volunteers were actively attempting to dislike the opposition.
Nonetheless, some differences appeared between the brain activity of Democrats and Republicans. Take empathy: One Democrat's brain lit up at an image of Kerry 'with a profound sense of connection, like a beautiful sunset,' Freedman said. Brain activity in a Republican shown an image of Bush was 'more interpersonal, such as if you smiled at someone and they smiled back.'"
Wired News: Clear Pictures of How We Think
YES OF COURSE EVERTYHING WE DO AND THINK REQUIRES DIFFERENTUSES OF OUR BRAIN AND BLOOD!!!
Wired News: Clear Pictures of How We Think: "functional magnetic-resonance imaging, or fMRI.
This technique allows the measurement of the level of oxygen in the blood, and tells scientists which parts of the brain are most active. It can show, for example, the parts of the brain that operate when we fall in love and when we have food cravings. It has even recently revealed the differences in the brains of Democrats and Republicans.
But the technique also holds out the promise of answering deep questions about our most cherished human characteristics. For example, do we have an inbuilt moral sense, or do we learn what is right and wrong as we grow up? And which is stronger: emotions or logic?
Before fMRI, information about the parts of the brain involved in different tasks could only be gathered by studying people who had suffered brain damage from trauma or stroke, and seeing how their brain function changed. Now, the brains of healthy people can be scanned as they are given different tasks.
'fMRI has provided striking evidence in favor of some theories and against others,' said Joshua Greene, of Princeton University's Department of Psychology. 'But I don't think the real payoff has hit yet. That will come when we have successful computational theories of complex decision-making, ones that describe decision-making at the level of neural circuits.'
Greene, together with Jonathan Cohen, professor of psychology at Princeton, is using fMRI to look at the factors that influence moral judgment. "
Wired News: Clear Pictures of How We Think: "functional magnetic-resonance imaging, or fMRI.
This technique allows the measurement of the level of oxygen in the blood, and tells scientists which parts of the brain are most active. It can show, for example, the parts of the brain that operate when we fall in love and when we have food cravings. It has even recently revealed the differences in the brains of Democrats and Republicans.
But the technique also holds out the promise of answering deep questions about our most cherished human characteristics. For example, do we have an inbuilt moral sense, or do we learn what is right and wrong as we grow up? And which is stronger: emotions or logic?
Before fMRI, information about the parts of the brain involved in different tasks could only be gathered by studying people who had suffered brain damage from trauma or stroke, and seeing how their brain function changed. Now, the brains of healthy people can be scanned as they are given different tasks.
'fMRI has provided striking evidence in favor of some theories and against others,' said Joshua Greene, of Princeton University's Department of Psychology. 'But I don't think the real payoff has hit yet. That will come when we have successful computational theories of complex decision-making, ones that describe decision-making at the level of neural circuits.'
Greene, together with Jonathan Cohen, professor of psychology at Princeton, is using fMRI to look at the factors that influence moral judgment. "
Friday, November 19, 2004
The Scientist :: MicroRNA controls insulin
The Scientist :: MicroRNA controls insulin: "The microRNA miR-375 regulates myotrophin, a protein involved in the final stages of insulin secretion from pancreatic islet cells, according to a publication in Nature this week.
The results suggest miR-375 as a possible new avenue for diabetes treatment, according to lead author Markus Stoffel, from Rockefeller University in New York. Of possibly greater immediate significance is a growing belief that microRNAs play other important roles in the pancreas, he said.
'We took an unbiased approach and cloned all of the microRNAs from a pancreatic beta cell line,' Stoffel told The Scientist. His group found more than 60, including novel ones that are highly specific to beta cells, some of which had only previously been described in the central nervous system."
The results suggest miR-375 as a possible new avenue for diabetes treatment, according to lead author Markus Stoffel, from Rockefeller University in New York. Of possibly greater immediate significance is a growing belief that microRNAs play other important roles in the pancreas, he said.
'We took an unbiased approach and cloned all of the microRNAs from a pancreatic beta cell line,' Stoffel told The Scientist. His group found more than 60, including novel ones that are highly specific to beta cells, some of which had only previously been described in the central nervous system."
Quantun Brain MOdel v6 Feb 1995
arXiv:quant-ph/9502006 v1 6 Feb 1995: "Finally, according to the original quantum brain model, the recall processis described as the excitation of dwq modes under an external stimulus whichis �essentially a replication signal�[9] of the one responsible for memory print-ing. When dwq are excited the brain �consciously feels�[9] the presence of thecondensate pattern in the corresponding coded vacuum. The replication signalthus acts as a probe by which the brain �reads� the printed information.In this connection we observe that the dwq may acquire an effective nonzeromass due to the effects of the system finite size[12]. Such an effective mass willthen introduce a threshold in the excitation energy of dwq so that, in order totrigger the recall process an energy supply equal or greater than such a thresholdis required. Non sufficient energy supply may be experienced as a �difficultyin recalling�. At the same time, however, the threshold may positively act asa �protection� against unwanted perturbations (including thermalization) andcooperate to the memory state stability. In the opposite case of zero thresholdany replication signal could excite the recalling and the brain would fall in astate of �continuous flow of memories"
Google Groups : Google-Labs-Google-Scholar
Google Groups : Google-Labs-Google-Scholar: "Occasionally Google employees may post to the group. Any Google
employee who participates in the group will always post with the name
'Google Employee'.
The Google Scholar group encourages free and open discussion on all
aspects of Google Scholar. However, posts not on this topic are not
welcome. We reserve the right to delete the posts that we consider
inappropriate."
employee who participates in the group will always post with the name
'Google Employee'.
The Google Scholar group encourages free and open discussion on all
aspects of Google Scholar. However, posts not on this topic are not
welcome. We reserve the right to delete the posts that we consider
inappropriate."
Sunday, November 07, 2004
Pharyngula::Symmetry breaking and genetic assimilation
Pharyngula::Symmetry breaking and genetic assimilation: "Friday, November 05, 2004
Symmetry breaking and genetic assimilation
How do evolutionary novelties arise? The conventional explanation is that the first step is the chance formation of a genetic mutation, which results in a new phenotype, which, if it is favored by selection, may be fixed in a population. No one sensible can seriously argue with this idea�it happens. I�m not going to argue with it at all.
However, there are also additional mechanisms for generating novelties, mechanisms that extend the power of evolutionary biology without contradicting our conventional understanding of it. A paper by A. Richard Palmer in Science describes the evidence for an alternative mode of evolution, genetic assimilation, that can be easily read as a radical, non-Darwinian, and even Lamarckian pattern of evolution (Sennoma at Malice Aforethought has expressed concern about this), but it is nothing of the kind; there is no hocus-pocus, no violation of the Weissmann barrier, no sudden, unexplained leaps of cause-and-effect. Comprehending it only requires a proper appreciation of the importance of environmental influences on development and an understanding that the genome does not constitute a descriptive program of the organism."
Symmetry breaking and genetic assimilation
How do evolutionary novelties arise? The conventional explanation is that the first step is the chance formation of a genetic mutation, which results in a new phenotype, which, if it is favored by selection, may be fixed in a population. No one sensible can seriously argue with this idea�it happens. I�m not going to argue with it at all.
However, there are also additional mechanisms for generating novelties, mechanisms that extend the power of evolutionary biology without contradicting our conventional understanding of it. A paper by A. Richard Palmer in Science describes the evidence for an alternative mode of evolution, genetic assimilation, that can be easily read as a radical, non-Darwinian, and even Lamarckian pattern of evolution (Sennoma at Malice Aforethought has expressed concern about this), but it is nothing of the kind; there is no hocus-pocus, no violation of the Weissmann barrier, no sudden, unexplained leaps of cause-and-effect. Comprehending it only requires a proper appreciation of the importance of environmental influences on development and an understanding that the genome does not constitute a descriptive program of the organism."
Subscribe to:
Posts (Atom)